Product Description

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

Item No. φD L L1 W M Tighten the strength(N.m)
SG7-11-30- 30 50 18.5 13 M3(4) 1.2
SG7-11-40- 40 66 25 16 M4(6) 2.7
SG7-11-55- 55 78 30 18 M5(4) 6
SG7-11-65- 65 90 35 20 M5(6) 6
SG7-11-80- 80 114 45 24 M6(8) 10
SG7-11-95- 95 126 50 26 M8(4) 35
SG7-11-105- 105 140 56 28 M8(4) 35

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

Item No. Rated torque Maximum Torque Max Speed Inertia Moment N.m rad Tilting Tolerance End-play Weight:(g)
SG7-11-30- 7.4N.m 14.8N.m 20000prm 8.7×10-4kg.m² 510N.m/rad 1.0c +0.6mm 50
SG7-11-40- 9.5N.m 19N.m 15000prm 1.12×10-3kg.m² 550N.m/rad 1.0c +0.8mm 120
SG7-11-55- 34N.m 68N.m 13000prm 4.5×10-3kg.m² 1510N.m/rad 1.0c +0.8mm 280
SG7-11-65- 95N.m 190N.m 10500prm 9.1×10-3kg.m² 2800N.m/rad 1.0c +0.8mm 450
SG7-11-80- 135N.m 270N.m 8600prm 1.9×10-2kg.m² 3600N.m/rad 1.0c +1.0mm 960
SG7-11-95- 230N.m 460N.m 7500prm 2.2×10-2kg.m² 4700N.m/rad 1.0c +1.0mm 2310
SG7-11-105- 380N.m 760N.m 6000prm 3.3×10-2kg.m² 5800N.m/rad 1.0c +1.0mm 3090

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

jaw coupling

Using Jaw Couplings in Hydraulic and Pneumatic Systems

Yes, jaw couplings can be used in both hydraulic and pneumatic systems to connect the driving and driven components. Jaw couplings are versatile and well-suited for various power transmission applications, including those involving fluid-based systems. Here’s how jaw couplings are compatible with hydraulic and pneumatic systems:

  • Flexibility: Jaw couplings are made of flexible materials, such as elastomers, which allow for some angular, parallel, and axial misalignment between the shafts. In hydraulic and pneumatic systems, where vibrations and movements are common, the jaw coupling’s ability to accommodate misalignment helps reduce stress on the connected components.
  • Shock Absorption: Hydraulic systems often experience pressure surges and hydraulic shocks due to rapid changes in fluid flow. Similarly, pneumatic systems may encounter air pressure fluctuations. Jaw couplings can absorb shocks and vibrations, protecting the system from sudden jolts and minimizing wear on components.
  • Corrosion Resistance: Some jaw couplings are available in materials that offer excellent corrosion resistance, making them suitable for hydraulic systems working with hydraulic fluids and pneumatic systems handling compressed air, which may contain moisture.
  • Low Inertia: Jaw couplings have low inertia, which is advantageous in applications where quick start-stop responses are required. This characteristic is beneficial in hydraulic and pneumatic systems that need rapid and precise movements.
  • Backlash Prevention: Backlash, which can lead to vibrations and inaccuracies, is minimized with jaw couplings. This feature is beneficial in hydraulic and pneumatic systems where precise positioning is crucial.
  • Simple Installation: Jaw couplings are easy to install and require minimal maintenance, making them suitable for various hydraulic and pneumatic applications.
  • Compatibility with Shaft Sizes: Jaw couplings are available in different sizes and configurations, allowing for compatibility with various shaft diameters commonly found in hydraulic and pneumatic systems.

Overall, jaw couplings offer reliable power transmission in hydraulic and pneumatic systems, providing benefits such as flexibility, shock absorption, corrosion resistance, low inertia, and backlash prevention. However, it’s essential to consider factors such as operating conditions, temperature, and the type of fluid used when selecting a jaw coupling for a specific hydraulic or pneumatic application.

jaw coupling

How does a jaw coupling help in power transmission efficiency?

A jaw coupling plays a significant role in enhancing power transmission efficiency in mechanical systems. It achieves this by incorporating several design features that minimize energy losses and maximize the transfer of power from one shaft to another. Here are some ways in which a jaw coupling helps improve power transmission efficiency:

  1. Mechanical Flexibility: Jaw couplings utilize a flexible elastomer spider as the connecting element between the two shafts. This elastomer spider allows for a certain degree of angular and parallel misalignment between the shafts without imposing significant additional loads on the connected equipment. The mechanical flexibility of the elastomer helps reduce the generation of excess heat and vibration, thereby optimizing power transmission efficiency.
  2. Vibration Damping: The elastomer spider in a jaw coupling also acts as a vibration-damping element. It absorbs and dissipates vibrations generated during the operation of rotating machinery. By dampening vibrations, the coupling reduces energy losses due to mechanical oscillations, which can otherwise decrease the overall power transmission efficiency.
  3. Shock Absorption: In addition to damping vibrations, jaw couplings can handle sudden shocks and impacts that may occur during equipment operation. The elastomer spider’s ability to absorb shocks prevents sudden force spikes from propagating through the system and helps maintain steady power transmission, thus improving overall efficiency.
  4. Reduced Friction: The design of jaw couplings minimizes sliding friction between the shafts and the coupling components. This reduced frictional resistance results in lower energy losses and less heat generation during power transmission, contributing to higher efficiency in the system.
  5. Torsional Wind-Up Compensation: When torque is transmitted through the shafts, there can be some degree of torsional wind-up or twist in the coupling. Jaw couplings can compensate for this torsional movement, ensuring that the transmitted power reaches the intended equipment without significant losses due to torsional deformation.
  6. Simple and Robust Design: Jaw couplings have a simple construction, typically consisting of two hubs and an elastomer spider. This straightforward design reduces the number of moving parts and potential points of failure, resulting in a robust and reliable coupling. A reliable coupling minimizes the risk of power losses due to mechanical inefficiencies or breakdowns, thus improving overall power transmission efficiency.

In summary, a jaw coupling enhances power transmission efficiency by providing mechanical flexibility, vibration damping, shock absorption, reduced friction, and torsional wind-up compensation. Its simple and robust design further contributes to reliable power transmission. When selecting a jaw coupling for a specific application, it is essential to consider factors such as torque requirements, operating conditions, and misalignment compensation to ensure optimal efficiency and performance in the system.

jaw coupling

Types of Jaw Coupling Designs

Jaw couplings come in various designs to meet different application requirements. The main types include:

  • One-Piece Jaw Coupling: This design consists of a single piece of material, typically made of steel or aluminum. It offers simplicity and compactness, making it suitable for light to medium-duty applications.
  • Two-Piece Jaw Coupling: This design features two separate hubs with a flexible spider placed in between. The two-piece design allows for easier assembly and disassembly, making it convenient for maintenance and replacement of the elastomeric spider.
  • Three-Piece Jaw Coupling: In this design, the coupling includes three parts: two hubs and an insert. The hubs are typically made of metal, while the insert is an elastomeric element (spider). Three-piece jaw couplings provide better damping of vibrations and are commonly used in applications where vibration isolation is crucial.
  • Customizable Jaw Coupling: Some manufacturers offer customizable jaw couplings, allowing customers to choose different hub styles, materials, and spider hardness to tailor the coupling’s performance for specific applications.

Each design has its advantages and is selected based on factors such as torque requirements, misalignment compensation, and ease of maintenance.

China Good quality High Torque Capacity 30mm Curved Jaw-Type Coupling in Stock  China Good quality High Torque Capacity 30mm Curved Jaw-Type Coupling in Stock
editor by CX 2024-03-10